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Why avoid communication? (1/2)
Algorithms have two costs (measured in time or energy):
1. Arithmetic (FLOPS)
2. Communication: moving data between 

– levels of a memory hierarchy (sequential case) 
– processors over a network (parallel case). 
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Why avoid communication? (2/2)
• Running time of an algorithm is sum of 3 terms:
– # flops * time_per_flop
– # words moved / bandwidth
– # messages * latency
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communication

• Time_per_flop <<  1/ bandwidth  <<  latency
• Gaps growing exponentially with time [FOSC]

• Avoid communication to save time
• Same story for saving energy

Annual improvements
Time_per_flop Bandwidth Latency

Network 26% 15%
DRAM 23% 5%

59%



Goals
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• Redesign algorithms to avoid communication
• Between all memory hierarchy levels 

• L1         L2         DRAM          network,  etc
• Attain lower bounds if possible

• Current algorithms often far from lower bounds
• Large speedups and energy savings possible 



• Up to 12x faster for 2.5D matmul on 64K core IBM BG/P
• Up to 3x faster for tensor contractions on 2K core Cray XE/6
• Up to 6.2x faster for All-Pairs-Shortest-Path on 24K core Cray CE6
• Up to 2.1x faster for 2.5D LU on 64K core IBM BG/P
• Up to 11.8x faster for direct N-body on 32K core IBM BG/P
• Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU
• Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere
• Up to 2x faster for 2.5D Strassen on 38K core Cray XT4
• Up to 4.2x faster for MiniGMG benchmark bottom solver,                  

using CA-BiCGStab (2.5x for overall solve) on 32K core Cray XE6
– 2.5x / 1.5x for combustion simulation code

• Up to 5.1x faster for coordinate descent LASSO on 3K core Cray XC30

Sample Speedups 
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• Up to 12x faster for 2.5D matmul on 64K core IBM BG/P
• Up to 3x faster for tensor contractions on 2K core Cray XE/6
• Up to 6.2x faster for All-Pairs-Shortest-Path on 24K core Cray CE6
• Up to 2.1x faster for 2.5D LU on 64K core IBM BG/P
• Up to 11.8x faster for direct N-body on 32K core IBM BG/P
• Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU
• Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere
• Up to 2x faster for 2.5D Strassen on 38K core Cray XT4
• Up to 4.2x faster for MiniGMG benchmark bottom solver,                  

using CA-BiCGStab (2.5x for overall solve) on 32K core Cray XE6
– 2.5x / 1.5x for combustion simulation code

• Up to 5.1x faster for coordinate descent LASSO on 3K core Cray XC30

SIAG on Supercomputing Best Paper Prize, 2016
Released in LAPACK 3.7, Dec 2016

Ideas adopted by Nervana, “deep learning” startup,
acquired by Intel in August 2016

Sample Speedups 
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Outline
• Survey state of the art of CA (Comm-Avoiding) algorithms
– Review previous Matmul algorithms
– CA O(n3) 2.5D Matmul and LU
– TSQR: Tall-Skinny QR
– CA Strassen Matmul

• Beyond linear algebra
– Extending lower bounds to any algorithm with arrays
– Communication-optimal N-body and CNN algorithms 

• CA-Krylov methods, and ML 
• Related Topics
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Summary of CA Linear Algebra
• “Direct” Linear Algebra
• Lower bounds on communication for linear algebra 

problems like Ax=b, least squares, Ax = λx, SVD, etc
• Mostly not attained by algorithms in standard libraries
• New algorithms that attain these lower bounds
• Being added to libraries: Sca/LAPACK, PLASMA, 

MAGMA
• Large speed-ups possible

• Autotuning to find optimal implementation
• Ditto for “Iterative” Linear Algebra 



Lower bound for all “n3-like” linear algebra

• Holds for
– Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …
– Some whole programs (sequences of  these operations, 

no matter how individual ops are interleaved, eg Ak)
– Dense and sparse matrices (where #flops  <<  n3 )
– Sequential and parallel algorithms
– Some graph-theoretic algorithms (eg Floyd-Warshall)
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• Let M = “fast” memory size (per processor)

#words_moved (per processor) = W(#flops (per processor) / M1/2 )

#messages_sent (per processor) = W(#flops (per processor) / M3/2 )

• Parallel case: assume either load or memory balanced
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• Let M = “fast” memory size (per processor)

#words_moved (per processor) = W(#flops (per processor) / M1/2 )

#messages_sent ≥  #words_moved / largest_message_size

• Parallel case: assume either load or memory balanced
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• Let M = “fast” memory size (per processor)

#words_moved (per processor) = W(#flops (per processor) / M1/2 )

#messages_sent (per processor) = W(#flops (per processor) / M3/2 )

• Parallel case: assume either load or memory balanced

SIAM SIAG/Linear Algebra Prize, 2012
Ballard, D., Holtz, Schwartz



Can we attain these lower bounds?

• Do conventional dense algorithms as implemented in  

LAPACK and ScaLAPACK attain these bounds?

– Often not 

• If not, are there other algorithms that do?

– Yes, for much of dense linear algebra, APSP

– New algorithms, with new numerical properties,               

new ways to encode answers,  new data structures                             

– Not just loop transformations (need those too!)

• Sparse algorithms: depends on sparsity structure

– Ex: Sparse Cholesky of matrices with “large” separators

– Ex: Matmul of “random” sparse matrices

– Ex: Matmul of dense x sparse matrices – up to 100x faster

• Lots of work in progress 13
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Naïve Matrix Multiply
{implements C = C + A*B}
for i = 1 to n

for j = 1 to n

for k = 1 to n
C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)
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Naïve Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
{read row i of A into fast memory}
for j = 1 to n

{read C(i,j) into fast memory}
{read column j of B into fast memory}
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)
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Naïve Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
{read row i of A into fast memory}                 …  n2 reads altogether
for j = 1 to n

{read C(i,j) into fast memory}                     …  n2 reads altogether
{read column j of B into fast memory}      …  n3 reads altogether
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}            … n2 writes altogether

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

n3 + 3n2 reads/writes altogether – dominates 2n3 arithmetic
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Blocked (Tiled) Matrix Multiply
Consider A,B,C to be n/b-by-n/b matrices of b-by-b subblocks where                             

b is called the block size;    assume 3 b-by-b blocks fit in fast memory
for i = 1 to n/b

for j = 1 to n/b
{read block C(i,j) into fast memory}
for k = 1 to n/b

{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)
b-by-b
block
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Blocked (Tiled) Matrix Multiply
Consider A,B,C to be n/b-by-n/b matrices of b-by-b subblocks where                             

b is called the block size;    assume 3 b-by-b blocks fit in fast memory 
for i = 1 to n/b

for j = 1 to n/b
{read block C(i,j) into fast memory}            … b2 × (n/b)2 = n2 reads
for k = 1 to n/b

{read block A(i,k) into fast memory} … b2 × (n/b)3 = n3/b reads  
{read block B(k,j) into fast memory}    … b2 × (n/b)3 = n3/b reads 
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory} … b2 × (n/b)2 = n2 writes

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)
b-by-b
block

2n3/b + 2n2 reads/writes << 2n3 arithmetic  - Faster!



Does blocked matmul attain lower bound?

• Recall: if 3 b-by-b blocks fit in fast memory of     
size M, then #reads/writes = 2n3/b + 2n2

• Make b as large as possible: 3b2 ≤ M, so       
#reads/writes  ≥ 31/2n3/M1/2  + 2n2

• Attains lower bound  = Ω (#flops / M1/2 )

• But what if we don’t know M? 

• Or if there are multiple levels of fast memory?

• Can use “Cache Oblivious” algorithm

20
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SUMMA– n x n matmul on P1/2 x P1/2 grid
(nearly) optimal using minimum memory M=O(n2/P) 

For k=0 to n/b-1   … b = block size = #cols in A(i,k) =  #rows in B(k,j)

for all i = 1 to P1/2 

owner of A(i,k) broadcasts it to whole processor row (using binary tree)

for all j = 1 to  P1/2

owner of B(k,j) broadcasts it to whole processor column (using bin. tree)

Receive A(i,k) into Acol

Receive B(k,j) into Brow

C_myproc = C_myproc + Acol * Brow

* =
i

j

A(i,k)

k
k
B(k,j)

C(i,j)

Brow

Acol



Summary of dense parallel algorithms 

attaining communication lower bounds

• Assume nxn matrices on P processors

• Minimum Memory per processor = M = O(n2 / P)

• Recall lower bounds:

#words_moved =   W( (n3/ P)  / M1/2 )  =  W( n2 /  P1/2 )      

#messages =   W( (n3/ P)  / M3/2 )  =  W( P1/2 )

• Does ScaLAPACK attain these bounds?

• For #words_moved: mostly, except nonsym. Eigenproblem

• For #messages: asymptotically worse, except Cholesky

• New algorithms attain all bounds, up to polylog(P) factors

• Cholesky, LU, QR, Sym. and Nonsym eigenproblems, SVD

Can we do Better?



Can we do better?
• Aren’t we already optimal?
• Why assume M = O(n2/p), i.e. minimal?
– Lower bound still true if more memory
– Can we attain it?

• Special case: “3D Matmul”
– Uses M = O(n2/p2/3 ) 
– Dekel, Nassimi, Sahni [81], Bernsten [89],                        

Agarwal, Chandra, Snir [90], Johnson [93],                        
Agarwal, Balle, Gustavson, Joshi, Palkar [95]

• Not always p1/3 times as much memory available…
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2.5D Matrix Multiplication 

• Assume can fit cn2/P data per processor, c > 1
• Processors form (P/c)1/2 x  (P/c)1/2 x  c  grid

c

(P/c)1/2

(P/c)1/2

Example: P =  32,  c = 2



2.5D Matrix Multiplication 

• Assume can fit cn2/P data per processor, c > 1
• Processors form (P/c)1/2 x  (P/c)1/2 x  c  grid

k

j

i
Initially P(i,j,0) owns A(i,j) and B(i,j)

each of size n(c/P)1/2 x n(c/P)1/2

(1)  P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
(2)  Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of  Σm A(i,m)*B(m,j)
(3)  Sum-reduce partial sums Σm A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C(i,j)



2.5D Matmul on BG/P, 16K nodes / 64K cores
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2.5D Matmul on BG/P, 16K nodes / 64K cores
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Perfect Strong Scaling – in Time and Energy  
• Every time you add a processor, you should use its memory M too
• Start with minimal number of procs: PM = 3n2

• Increase P by a factor of c è total memory increases by a factor of c
• Notation for timing model:
– γT , βT , αT = secs per flop, per word_moved, per message of size m

• T(cP) = n3/(cP) [ γT+ βT/M1/2 + αT/(mM1/2) ]
= T(P)/c

• Notation for energy model:
– γE , βE , αE = joules for same operations
– δE = joules per word of memory used per sec
– εE = joules per sec for leakage, etc.

• E(cP) = cP { n3/(cP) [ γE+ βE/M1/2 + αE/(mM1/2) ] + δEMT(cP) + εET(cP) }
= E(P)

• Extends to N-body, Strassen, …
• Can prove lower bounds on needed network (eg 3D torus for matmul)



2.5D vs 2D LU
With and Without Pivoting
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Thm: Perfect Strong Scaling impossible, because  Latency*BW = Ω(n2)
Thm: 2.5D version of QR possible too 
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TSQR: QR of a Tall, Skinny matrix
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TSQR: QR of a Tall, Skinny matrix
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TSQR: An Architecture-Dependent Algorithm

W = 

W0
W1
W2
W3

R00
R10
R20
R30

R01

R11
R02Parallel:

W = 

W0
W1
W2
W3

R01 R02

R00

R03
Sequential:

W = 

W0
W1
W2
W3

R00
R01

R01
R11

R02

R11
R03

Dual Core:

Can choose reduction tree dynamically
Multicore / Multisocket / Multirack / Multisite / Out-of-core:  ?



TSQR Performance Results
• Parallel

– Intel Clovertown
– Up to 8x speedup (8 core, dual socket, 10M x 10)

– Pentium III cluster, Dolphin Interconnect, MPICH
• Up to 6.7x speedup (16 procs, 100K x 200)

– BlueGene/L
• Up to 4x speedup (32 procs, 1M x 50)

– Tesla C 2050 / Fermi
• Up to 13x (110,592 x 100)

– Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
– Cloud – 1.6x slower than just accessing data twice (Gleich and Benson)

• Sequential  
– “Infinite speedup” for out-of-core on PowerPC laptop

• As little as 2x slowdown vs (predicted) infinite DRAM
• LAPACK with virtual memory never finished

• SVD costs  about the same
• Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer, others

35

Data from Grey Ballard, Mark Hoemmen, Laura Grigori, Julien Langou, Jack Dongarra, 



TSQR Performance Results
• Parallel

– Intel Clovertown
– Up to 8x speedup (8 core, dual socket, 10M x 10)

– Pentium III cluster, Dolphin Interconnect, MPICH
• Up to 6.7x speedup (16 procs, 100K x 200)

– BlueGene/L
• Up to 4x speedup (32 procs, 1M x 50)

– Tesla C 2050 / Fermi
• Up to 13x (110,592 x 100)

– Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
– Cloud – 1.6x slower than just accessing data twice (Gleich and Benson)

• Sequential  
– “Infinite speedup” for out-of-core on PowerPC laptop

• As little as 2x slowdown vs (predicted) infinite DRAM
• LAPACK with virtual memory never finished

• SVD costs  about the same
• Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer, others
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Data from Grey Ballard, Mark Hoemmen, Laura Grigori, Julien Langou, Jack Dongarra, 

SIAG on Supercomputing Best Paper Prize, 2016 



Related Work

• Lots more work on

– Algorithms: 

• BLAS, LDLT, QR with pivoting, other pivoting schemes, eigenproblems, …

• Sparse matrices, structured matrices     

• All-pairs-shortest-path, …

• Both 2D (c=1) and 2.5D (c>1)  

• But only bandwidth may decrease with c>1, not latency (eg LU)

– Platforms: 

• Multicore, cluster, GPU, cloud, heterogeneous,   low-energy, …

– Software: 

• Integration into Sca/LAPACK, PLASMA,  MAGMA,…

• Integration into applications 

– CTF (with ANL): symmetric tensor contractions
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Recall optimal sequential Matmul
• Naïve code

for i=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j)

• “Blocked” code
for i1 = 1:b:n,  for j1 = 1:b:n,   for k1 = 1:b:n
for i2 = 0:b-1,  for j2 = 0:b-1,   for k2 = 0:b-1

i=i1+i2,  j = j1+j2,  k = k1+k2
C(i,j)+=A(i,k)*B(k,j)

• Thm: Picking b = M1/2 attains lower bound:
#words_moved = Ω(n3/M1/2)

• Where does 1/2 come from?

b x b matmul



New Thm applied to Matmul
• for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)
• Record array indices in matrix Δ

• Solve LP for x = [xi,xj,xk]T:  max 1Tx   s.t. Δ x ≤ 1
– Result: x = [1/2, 1/2, 1/2]T, 1Tx = 3/2 = sHBL

• Thm: #words_moved = Ω(n3/MSHBL-1)= Ω(n3/M1/2)
Attained by block sizes Mxi,Mxj,Mxk = M1/2,M1/2,M1/2

i j k

1 0 1 A

Δ = 0 1 1 B

1 1 0 C



New Thm applied to Direct N-Body

• for i=1:n, for j=1:n, F(i) += force( P(i) , P(j) )

• Record array indices in matrix Δ

• Solve LP for x = [xi,xj]
T
:  max 1T

x  s.t. Δ x ≤ 1
– Result: x = [1,1], 1T

x = 2 = sHBL

• Thm: #words_moved = Ω(n
2
/M

SHBL-1)= Ω(n
2
/M

1
)

Attained by block sizes M
xi

,M
xj

= M
1
,M

1

i j

1 0 F

Δ = 1 0 P(i)

0 1 P(j)



N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

11.8x speedup

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik



Variable Loop Bounds are More Complicated

• Redundancy in n-body calculation f(i,j), f(j,i)

• k-way n-body problems (“k-body”) has even more
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Some Applications
• Gravity, Turbulence, Molecular Dynamics, Plasma 

Simulation, …
• Electron-Beam Lithography Device Simulation
• Hair ...   

– www.fxguide.com/featured/brave-new-hair/
– graphics.pixar.com/library/CurlyHairA/paper.pdf
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http://www.fxguide.com/featured/brave-new-hair/
http://graphics.pixar.com/library/CurlyHairA/paper.pdf


Where do lower and matching upper bounds on 
communication come from? 

• Originally for C = A*B by Irony/Tiskin/Toledo (2004)
• Proof idea
– Suppose we can bound #useful_operations ≤ G doable 

with data in fast memory of size M
– So to do F = #total_operations, need to fill fast memory 

F/G times, and so #words_moved ≥ MF/G
• Hard part: finding G
• Attaining lower bound
– Need to “block” all operations to perform ~G operations 

on every chunk of M words of data 



Approach to generalizing lower bounds
• Matmul

for i=1:n, for j=1:n, for k=1:n, 

C(i,j)+=A(i,k)*B(k,j)

=>   for (i,j,k) in S = subset of Z3

Access locations indexed by (i,j), (i,k),  (k,j)

• General case

for i1=1:n,  for i2 = i1:m, … for ik = i3:i4

C(i1+2*i3-i7) = func(A(i2+3*i4,i1,i2,i1+i2,…),B(pnt(3*i4)),…)

D(something else) = func(something else),  …

=>  for (i1,i2,…,ik) in S = subset of Zk

Access locations indexed by group homomorphisms, eg

φC (i1,i2,…,ik) = (i1+2*i3-i7)

φA (i1,i2,…,ik) = (i2+3*i4,i1,i2,i1+i2,…),  …

• Goal: Communication lower bounds, optimal algorithms for any
program that looks like this



General Communication Lower Bound

• Thm: Given a program with array refs given by 
projections φj, then there is an e ≥ 1 such that

#words_moved = Ω (#iterations/Me-1)
where e is the the value of a linear program:

minimize e = Σj ej subject to 
rank(H) ≤ Σj ej*rank(φj(H))  for all subgroups H < Zk

– Proof depends on recent result in pure mathematics by   
Christ/Tao/Carbery/Bennett

• Thm: This lower bound is attainable, via loop tiling
– Assumptions: dependencies permit, and iteration space big 

enough
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What CNNs compute

C

H
W SR

Image

X

R S R S

C
…K

Filter

=

H
W

K

Out

B copies B copies

for k=1:K,    for h=1:H,    for w=1:W,    for r=1:R,                       
for s=1:S,     for c=1:C,    for b=1:B

Out(k, h, w, b) += Image(r+w, s+h, c, b) * Filter( k, r, s, c )



What CNNs compute

C

HσH
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C
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Filter

=

H
W

K

Out

B copies B copies

for k=1:K,    for h=1:H,    for w=1:W,    for r=1:R,                       
for s=1:S,     for c=1:C,    for b=1:B

Out(k, h, w, b) += Image(r+σWw, s+σHh, c, b) * Filter( k, r, s, c )



Communication Lower Bound for CNNs

• Let N = #iterations = KHWRSCB, M = cache size

• #words moved = Ω( max(   … 5 terms

BKHW,              …   size of Out

σHσWBCWH,    ...   size of Image

CKRS,                ...   size of Filter

N/M,                 ...   lower bound  like N-body

N/(M1/2 (RS/(σHσW))1/2 )  ... new lower bound )

• New lower bound

– Beats matmul by factor (RS/(σHσW))1/2 

– Applies in common case when data does not fit in 
cache, but one RxS filter does

– Tile needed to attain N/M too big to fit in loop bounds         



Attaining lower bound

• Thm: Lower bound attainable, for all 
K,H,W,R,S,C,B,M,σH,σW

• Computer generated proof 
automatic code generation for all cases



Ongoing Work
• Implement/improve algorithms to generate for lower 

bounds, optimal algorithms
• Dealing with small loop bounds
– What if “optimal” tile too large to use?
– Ex: Tighter lower bound possible for CNNs

• Dealing with dependencies
– What if “optimal” tile does not respect dependencies?

• Extend “perfect scaling” results for time and energy by 
using extra memory
– “n.5D algorithms”

• Incorporate into compilers



Outline
• Survey state of the art of CA (Comm-Avoiding) algorithms
– Review previous Matmul algorithms
– CA O(n3) 2.5D Matmul and LU
– TSQR: Tall-Skinny QR
– CA Strassen Matmul

• Beyond linear algebra
– Extending lower bounds to any algorithm with arrays
– Communication-optimal N-body and CNN algorithms 

• CA-Krylov methods, and ML 
• Related Topics



Avoiding Communication in Iterative Linear Algebra

• k-steps of iterative solver for sparse Ax=b or Ax=λx
– Does k SpMVs with A and starting vector
– Many such �Krylov Subspace Methods�
• Conjugate Gradients (CG), GMRES, Lanczos, Arnoldi, … 

• Goal: minimize communication
– Assume matrix �well-partitioned�
– Serial implementation
• Conventional: O(k) moves of data from slow to fast memory
• New: O(1) moves of data – optimal

– Parallel implementation on p processors
• Conventional: O(k log p) messages  (k SpMV calls, dot prods)
• New: O(log p) messages - optimal

• Lots of speed up possible (modeled and measured)
– Price: some redundant computation
– Challenges: Poor partitioning, Preconditioning, Num. Stability59
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Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A×x with [Ax, A2x, …, Akx] 

• Example: A tridiagonal, n=32, k=3

• Works for any “well-partitioned” A



1   2   3   4  … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A×x with [Ax, A2x, …, Akx] 

• Example: A tridiagonal, n=32, k=3



1   2   3   4  … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A×x with [Ax, A2x, …, Akx] 

• Example: A tridiagonal, n=32, k=3



1   2   3   4  … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A×x with [Ax, A2x, …, Akx] 

• Example: A tridiagonal, n=32, k=3



1   2   3   4  … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A×x with [Ax, A2x, …, Akx] 

• Example: A tridiagonal, n=32, k=3



1   2   3   4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A×x with [Ax, A2x, …, Akx] 

• Example: A tridiagonal, n=32, k=3



1   2   3   4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A×x with [Ax, A2x, …, Akx]

• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1
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Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A×x with [Ax, A2x, …, Akx] 

• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1 Step  2 Step  3 Step  4
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Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A×x with [Ax, A2x, …, Akx]

• Parallel Algorithm

• Example: A tridiagonal, n=32, k=3

• Each processor communicates once with neighbors 

Proc 1 Proc  2 Proc  3 Proc  4
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x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx] 

• Replace k iterations of y = A×x with [Ax, A2x, …, Akx]

• Parallel Algorithm

• Example: A tridiagonal, n=32, k=3

• Each processor works on (overlapping) trapezoid

Proc 1 Proc  2 Proc  3 Proc  4



The Matrix Powers Kernel : [Ax, A2x, …, Akx] on a 
general matrix (nearest k neighbors on a graph)

Same idea for general sparse matrices: k-wide neighboring region
72

Simple block-row partitioning è
(hyper)graph partitioning

Top-to-bottom processing è
Traveling Salesman Problem 



Minimizing Communication of GMRES to solve Ax=b

• GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2

Standard GMRES
for i=1 to k

w = A · v(i-1)   … SpMV
MGS(w, v(0),…,v(i-1))
update v(i), H

endfor
solve LSQ problem with H

Communication-avoiding GMRES
W = [ v, Av, A2v, … , Akv ]
[Q,R] = TSQR(W)  

…  �Tall Skinny QR�
build H from R 
solve LSQ problem with H

•Oops – W from power method, precision lost!
73

Sequential case: #words moved decreases by a factor of k
Parallel case: #messages decreases by a factor of k



Matrix Powers Kernel + TSQR in GMRES
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CA-GMRES (Monomial basis)
CA-GMRES (Newton basis)
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Speed ups of GMRES on 8-core Intel Clovertown

[MHDY09]

75

Requires Co-tuning Kernels
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CA-BiCGStab





Naive Monomial Newton Chebyshev

Replacement Its. 74 (1) [7, 15, 24, 31, …, 
92, 97, 103] (17)

[67, 98] (2) 68 (1)

With Residual Replacement (RR) 
a la Van der Vorst and Ye 



Speedups for GMG w/CA-KSM Bottom Solve

79

• Compared BICGSTAB vs. CA-BICGSTAB with  

s = 4 (monomial basis)

• Hopper at NERSC (Cray XE6), weak scaling: 

Up to 4096 MPI processes (1 per chip, 

24,576 cores total)

• Speedups for miniGMG benchmark (HPGMG benchmark predecessor) 

–4.2x in bottom solve, 2.5x overall GMG solve

• Implemented as a solver option in BoxLib and CHOMBO AMR frameworks

• Speedups for two BoxLib applications:

–3D LMC (a low-mach number combustion code)

• 2.5x in bottom solve, 1.5x overall GMG solve

–3D Nyx (an N-body and gas dynamics code)

• 2x in bottom solve, 1.15x overall GMG solve



Communication-Avoiding
Machine Learning: CAML

Dot	products	and	axpys



Communication-Avoiding
Coordinate Descent

CA-CD	algorithm

Until	convergence	do:
1. Randomly	select	s	data	points
2. Compute	Gram	matrix
3. Solve	minimization	problem	

for	all	data	points
4. Update	solution	vector

• We	expect	1st flops	term	to	dominate

• MPI:	 choose	s	that	balances	cost
• Spark:			choose	large	s to	minimize	rounds
• Parallel	implementations	in	progress	

• Up	to	5.1x	speedup	on	Cray	XC30	for	LASSO
Numerically	stable	for	(very)	
large	s

GEMM,	
dot	
products,
and	axpys

0 2 4 6 8 10
Iterations (H) #105

-3

-2.5

-2

-1.5

-1

-0.5

0

R
el

at
iv

e 
er

ro
r

DCD
CA-DCD s = 500
CA-DCD s = 1000
CA-DCD s = 2000



Summary of Iterative Linear Algebra

• New lower bounds, optimal algorithms,                  
big speedups in theory and practice

• Lots of other progress, open problems
– Many different algorithms reorganized 

• More underway, more to be done
– Need to recognize stable variants more easily
– Preconditioning  

• Hierarchically Semiseparable Matrices
– Autotuning and synthesis

• Different kinds of “sparse matrices”
– More extensions to Machine Learning



Outline
• Survey state of the art of CA (Comm-Avoiding) algorithms
– Review previous Matmul algorithms
– CA O(n3) 2.5D Matmul and LU
– TSQR: Tall-Skinny QR
– CA Strassen Matmul

• Beyond linear algebra
– Extending lower bounds to any algorithm with arrays
– Communication-optimal N-body and CNN algorithms 

• CA-Krylov methods, and ML 
• Related Topics 
– Write-Avoiding Algorithms
– Reproducibility
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For more details

• Bebop.cs.berkeley.edu
– 155 page survey in Acta Numerica (2014)

• CS267 – Berkeley’s Parallel Computing Course
– Live broadcast in Spring 2018

• www.cs.berkeley.edu/~demmel
• All slides, video available 

– Prerecorded version broadcast since Spring 2013
• www.xsede.org
• Free supercomputer accounts to do homework
• Free autograding of homework

http://www.cs.berkeley.edu/~demmel
http://www.xsede.org


Summary

Don’t Communic…

86

Time to redesign all linear algebra, n-body, …  
algorithms and software

(and compilers) 



Back up slides
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Optimal tiling for “slanted” n-body

for i = 0:n
for j = 0:n

access A(i), B(i+j)

Tiling (for cache size 10)
Read 5 entries of A:

A([0,1,2,3,4])
Read 5 entries of B:

B([4,5,6,7,8])
Perform 52 = 25

loop iterations

j
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Optimal tiling for “twisted” n-body

i

j

for i = 0:n
for j = 0:n

access A(3*i-j), 
B(i-2*j)

Tiling (for cache size 10)
Read 5 entries of A:

A([0,5,10,15,20])
Read 5 entries of B:

B([0,-5,-10,-15,-20])
Perform 52 = 25

loop iterations
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